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ABSTRACT 

In this paper, a nonlinear position tracking controller is 
derived based on feedback linearization to globally linearize the 
nonlinear dynamics of an electrohydraulic actuator with 
nonlinear state feedback. A detailed computer model is 
developed for a four-post road simulation system with a transit 
bus as the test vehicle. Using this model, comparisons are 
conducted between the proposed nonlinear decentralized 
controller and a traditional linear decentralized controller. 
Previously introduced interaction measures suitable for time 
domain analysis of nonlinear systems confirm that, for the test 
vehicle considered, load plate position loop interactions are 
quickly eliminated by either the linear or nonlinear 
decentralized position controllers. The performance of the road 
simulator as gauged by a position tracking error metric for a 
typical rough road profile is improved by over 60% across all 
actuators and response matching of sprung mass vertical 
acceleration PSD is likewise improved by over 50% when 
using the nonlinear decentralized controller. 

Keywords: road simulator, four-poster, electrohydraulic 
actuators, input-output linearization, decentralized control, 
actuator interaction, feedback linearization 

INTRODUCTION 
Road simulators enable the in-laboratory evaluation of 

vehicle structural durability and vehicle dynamics for ride 
comfort and Noise and Vibration Harshness (NVH) without 
having to run the vehicle’s drive train on an actual road surface. 
They can also be used in the assessment of pavement damage 
and the study of road-vehicle interaction. 

In a typical tire-coupled four-post road simulator (four-
poster), electrohydraulic actuators are employed to apply 
vertical excitations through the tires of the test vehicle. Fig 1 
shows a schematic of the main components for one leg of a 
four-poster. The test vehicle’s wheels are mounted on the wheel 
or load plates located at one end of a double acting piston. A 
servovalve modulates flow to and from the top and bottom 
piston-actuator cylinder chambers. 

The individual actuators are usually controlled using linear 
decentralized PID load-plate position controllers, which 
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sometimes include differential pressure (∆p) feedback for 
improved damping [1]. Here, by decentralized control we mean 
the control of each actuator independently of the others, in an 
essentially SISO (Single Input Single Output) setup. 
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Figure 1 Schematic of one leg of a four-poster 

However, conventional PID (+∆p) control loops acting on 
electrohydraulic hardware have practical difficulties such as 
stability margins, actuator and test fixture bandwidth 
limitations and inevitable nonlinearities in the electrohydraulic 
system. Furthermore, when considering all four actuators and 
the test vehicle, the whole system is a dynamically coupled 
nonlinear system. These all have a negative bearing on the 
effort to match the drive signals (xd(t)) with the actual piston 
position in a repeatable manner using only PID (+∆p) control 
loops. The testing community employing electrohydraulic 
actuators has found it necessary to use the PID controller as an 
‘inner’ control loop and include ‘outer’ compensation loops to 
improve control accuracy, stability and repeatability [1, 2] 

A summary of the ‘outer’-loop compensation techniques, 
which generally involve iterative (mainly off-line) computation 
of drive signals xd(t) that attempt to match field measured 
responses with on-simulator responses, is given in [1-4]. These 
approaches generally apply the iterations with Multiple Input 
Multiple Output (MIMO) setups to systematically address the 
issue of nonlinearity and load cross-coupling. The ‘inner’-loop 
is generally left to the decentralized PID (+∆p) loops. 
1 Copyright © 2005 by ASME 
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In this paper, we investigate the potential of a decentralized 
nonlinear position controller, which is derived based on input-
output (IO) or partial feedback linearization [5, 6] to improve 
the performance of the decentralized ‘inner’-control loops of a 
road simulator. Perhaps the earliest study on the application of 
feedback linearization to electrohydraulic actuators was that of 
Axelson and Kumar [7] in 1988. Their work presented the 
derivation of the control law emphasizing the nonlinearity of 
valve flow only. Hahn, et al [8] derived a more detailed 
controller for the position tracking case and presented limited 
results from simulations with an inertia load. Vossoughi and 
Donath[9] presented an analysis and derivation of feedback 
linearizing controller for a velocity tracking robotic application. 
Del Re and Isidori [10] discussed the application of feedback 
linearization by using linear-bilinear model approximations of a 
nonlinear hydrostatic transmission. In this paper, we present a 
study of decentralized Near IO linearizing control of 
electrohydraulic actuators in four-post road simulation. 

The rest of the paper is organized as follows. First, we 
present the nonlinear electrohydraulic actuator model and 
nonlinear full-bus model of a transit bus used in this study. We 
then derive the nonlinear controller to be implemented in the 
road simulator system model. We shall then briefly look at 
interactions between the decentralized position controls loops, 
and follow this by a comparative study of road simulator 
performance under the nonlinear and PID+∆p decentralized 
controllers. Finally, we present the conclusions of the paper. 

NOMENCLATURE 
Ab , At piston areas for the bottom and top 

chambers, respectively 
blf, brf, blr, brr distances from each unsprung mass c.g. to 

the left and right tires as shown in Fig.3 
CL leakage coefficient  
Cti ;i=1,2,3,4 tire damping coefficients 
Cv,i ;i=1,2,3,4 valve coefficient referred to each port 
dlf, drf, dlr, drr distances from the sprung mass c.g. to each 

suspension attachment point in Fig.3 
e position tracking error  
fdi, i=1,2,3,4 nonlinear function for shock absorber 

damping 
Ff friction force on piston 
FL load force on piston 
fp nonlinear feedback term given by Eq (15) 
Fp fluid pressure force on piston 
fsi, i=1,2,3,4 interpolation function for air suspension 

stiffness 
Fsi,i=1,2,3,4 suspension forces 
Fti,i=1,2,3,4 tire forces 
g acceleration due to gravity 
gp nonlinear feedback term given by Eq (16) 
GV static gain of the valve 
i, j, k indexing integers 
IP Pitch moment of inertia for sprung mass 
Ir, Iuf, Iur roll moments of inertia for sprung and front 

and rear unsprung masses, respectively 
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iv servovalve current 
ivoff offset current to account for abrasion wear 

and lap  

vi  net servovalve current 

k1, k2, k3 control gains in Eq (19) 
KP, KI, KD, 
K∆p 

PID+∆p controller gains in Eq (21) 

Kti ;i=1,2,3,4 tire stiffness 
Kv,i ; i=1,2,3,4 valve coefficients defined with spool position 
lf, lr distance from sprung mass c.g. to each axle, 

in Fig. 3 
mp lumped mass of piston, load plate and oil  
Ms mass of sprung mass 
Muf, Mur mass of unsprung mass, front and rear 

respectively 
pb ,pt pressure in the bottom and top cylinder 

chambers, respectively 
pR return pressure at servovalve 
pS supply pressure at servovalve 
qb, qt flow to the bottom and from the top cylinder 

chambers, respectively 
qe,b, qe,t external leakage from the bottom and top 

chambers, respectively 
qi internal leakage in cylinder 
s Laplace variable 
t, T, to time, smoothing factor, and step time, 

respectively, used in Eq (28) 
v intermediate control defined by Eq (19) 
Vb, Vt bottom and top cylinder chamber volumes, 

respectively 
vp piston velocity 
Xd amplitude of reference magnitude in Eq (28) 
xp piston position 
xd desired or reference position trajectory 
xv servovalve spool position 
xvoff offset servovalve spool position to account 

for abrasion wear and lap 

vi  net servovalve spool position 

zs, zuf, zur vertical position of c.g. of sprung mass, and 
front and rear unsprung mass, respectively  

zui,zsi 
i=1,2,3,4 

positions of tire and suspension attachment 
points, respectively, w.r.t. zero roll and pitch  

βe effective bulk modulus 

θ pitch angle of sprung mass 

∆p differential pressure (∆p=pb-pt) 
φ, φuf,φur roll of body, and front and rear unsprung 

mass roll, respectively 

MODEL DEVELOPMENT 

Electrohydraulic Actuator Model 

Models of electrohydraulic actuators are quite widely 
available in the literature [11-14]. The model presented here 
applies to a four-way critically centered servovalve close-
2 Copyright © 2005 by ASME 
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coupled with a double-ended translational piston actuator as 
shown in Fig. 2. In the figure, qt and qb, are flow rate from the 
top chamber and to the bottom chamber of the cylinder, 
respectively. qi represents internal leakage flow between the 
two chambers and qe,t and qe,b are external leakage from the top 
and bottom chambers, respectively. At and Ab represent the 
effective piston areas of the top and bottom piston face, 
respectively, and Vt and Vb designate the volumes of oil in the 
top and bottom chambers, respectively, corresponding to the 
center position (xp=0) of the piston. These volumes also include 
the respective volumes of oil in the short pipelines between the 
close-coupled servovalve and actuator. 
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Figure 2 Schematic of actuator and servovalve 

It shall be assumed here that the pressure dynamics in the 
lines between the servovalve and the actuator are negligible due 
to the close-coupling. Even for a long-stroke actuator in a flight 
simulator application, where close-coupling may not be 
feasible, Van Schothorst [13] showed that the pressure 
dynamics in the actuator chambers need not be modeled using 
distributed parameter models and that they can be assumed 
uniform in each chamber. Starting with the continuity equation 
and the state equation with the effective oil bulk modulus for 
the cylinder chambers, it can be shown that the chamber 
pressure dynamics are given by (see, for example [14]): 

)( ,beipbb
pbb

eb qqxAq
xAVdt

dp
−+−

+
= �

β
  (1) 

)( ,teiptt
ptt

et qqxAq
xAVdt

dp
−−+−

−
= �

β
  (2) 

These equations show that the hydraulic capacitance, and 
hence the pressure evolution in the two chambers depends on 
the piston position, thereby introducing nonlinearity in the 
chamber pressure dynamics. The external leakage flows, qe,b, 
and qe,t, are negligible. The internal leakage past the piston 
seals is usually assumed to be laminar, with a leakage 
coefficient, CL, as follows:  

)( btLi ppCq −=     (3) 

The predominantly turbulent flows through the sharp-edged 
control orifices of a spool valve to and from the two sides of the 
cylinder chambers are modeled by nonlinear expressions as 
follows [12, 14, 15]: 
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RbRbvv
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where the function, sg(x), is defined by:  

�
�
�

<
≥

=
0,0
0,

)(
x

xx
xsg     (6) 

Here, Kv,i,, i = 1, 2, 3, 4 are the valve coefficients whose 
estimation shall be described shortly.  

The state equations governing piston motion are derived 
considering the actuator loading model. The force on the 
actuator piston due to the oil pressure is given by: 

ttbbp pApAF −=     (7) 

Denoting the friction force on the piston by Ff and the load 
force, which is the tire force in the present case, by FL,, and 
applying Newton’s Second Law, we have: 

pp vx =�      (8) 

][
1

gmFFpApA
m

v pfLttbb
p

p −−−−=�   (9) 

Equations (1), (2), (8) and (9), with qb and qt given by Eqs (4) 
and (5), constitute the state space model for the servovalve and 
loaded actuator subsystem. These equations also contain the 
major nonlinearities in the system, which are the variable 
hydraulic capacitance and the square root flow rate versus 
pressure drop relations. Further nonlinearity is introduced in Eq 
(9) by a nonlinear friction force, which could include Coulomb, 
static, and viscous components [3], a nonlinear load force FL 
which also transmits nonlinear suspension forces. 

CONTROLLER DERIVATION 

Basic Assumptions 

For the control law derivation, the servovalve is considered 
to be critically centered, i.e., underlap/overlap lengths are 
neglected. Instead, an offset value of the valve position can be 
estimated during calibration to take into account any abrasion-
induced null offsets [14]. Also, the valve spool dynamics are 
neglected. This implies that the valve spool position is assumed 
to be related to the servovalve current with a static gain Gv, as: 

vvv xGi =      (10) 

where, voffvv iii −= , and voffvv xxx −= , with ivoff and xvoff 

representing the current offset and valve spool position offset, 
respectively. In this paper, we choose to consider the 
servovalve current as the control variable. The flow rates to and 
from the cylinder chambers are then rewritten as follows: 

RbRbvv

bSbSvvb

ppppsignisgC

ppppsignisgCq

−−−

−−−=

)()(

)()(

2,

1,
  (11) 
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RtRtvvt
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ppppsignisgCq

−−−

−−−=

)()(

)()(

4,

3,
 (12) 

where the new valve coefficients referenced to the current are 
given by: 

4,3,2,1,, == iKGC ivviv    (13) 

The form of the flow rate equations given by Eqs (11) and 
(12) allow us to estimate the valve coefficients Cv,i from quick 
offline experiments; see for example ref [15] (pp 184-186). 

We also assume that accumulators are close-coupled on the 
servovalve manifold on the return and supply lines. We can 
then justifiably assume constant values for the supply and 
return pressures at the servovalve [16]. 

To simplify the analysis, we assume perfect knowledge of 
the necessary parameters for the nonlinear controller. Robust 
control versions are described in [3]. Aside from the 
determination of parametric and measurement uncertainty 
bounds, there should be no major difficulty in switching to the 
robust versions. We also assume that the four actuators are 
identical in terms of modeling parameters. However, their 
decentralized controllers can be tuned separately. 

Load Plate Position Tracking Controllers 

The first and second derivatives of the output position, xp, 
as given by Eqs (8) and (9) do not contain the control input, vi , 
However, further differentiation of Eq (9) gives:  

vvtbppLftbpppp iippxgFFppxxfx ))sgn(,,,(),,,,,( += ������  (14) 

where the nonlinear functions, fp and gp, are respectively: 
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Equation (14), with the nonlinear functions fpand gp 
defined by Eqs (15) and (16), respectively, contains all the 
major modeled nonlinearities from fluid compliance and 
turbulent orifice flow as well as friction and load forces. From 
Eq (14), piecewise input-output (IO) linearization [5, 6] can be 
performed in the respective domains ( 0≥vi  and 0<vi ) and 
the nonlinearities can be cancelled by choosing the control law: 

)),,,,,((
))sgn(,,,(

1
Lftbppp

vtbpp
v FFppxxfv

ippxg
i ���−=  (17) 
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The closed loop position dynamics reduces to the triple 
integrator:  

vx p =���      (18) 

which can easily be stabilized by state feedback. It also gives 
an exponentially convergent tracking (provided the internal 
dynamics are stable) when the new dummy input v is chosen as:  

)()()( 123 dpdpdpd xxkxxkxxkxv −−−−−−= ���������  (19) 

where xd is the desired position profile. It can easily be shown 
that there are no internal dynamics for position tracking [3]. 
Combining Eqs (18) and (19), the dynamics of the closed loop 
tracking error, e=xp-xd, reduce to: 

0123 =+++ ekekeke ������     (20) 

The gains k1, k2, and k3 can be chosen to place the poles of 
the closed loop tracking error dynamics strictly in the left half 
s-plane. This could be done by using direct pole placement or 
posing the problem as a linear optimal control problem [3]. 
Direct pole placement involves deciding on the location of the 
three poles for the closed loop error dynamics given by Eq.(20) 
and invoking pole placement routines to compute the three 
gains k1, k2, and k3.This latter approach is used in this paper. 

It is important to note that the nonlinear control expression 
Eq (17) cannot be solved “as is”, since it contains the control 
variable, vi , on both sides of an equation involving the signum 
(sgn) function. In practice, during the digital implementation, 
the sign of the value of vi  at the previous time step can be used 

to compute the value of vi at the current time step, supposing 
that the current does not change signs at a rate faster than the 
base sampling rate. However, it is difficult to analytically prove 
that this approach does not lead to control chatter. This chatter 
problem has not been previously reported in the literature that 
discusses feedback linearization for hydraulic drives [8-10]. In 
addition, we have not experienced this problem in any of our 
experiments with force and position control on an experimental 
electrohydraulic actuator [3]. Nevertheless, the name Near 
input-output (Near IO) linearization is adopted in this paper to 
make the explicit distinction that the present controller is not a 
true IO linearizing controller in the traditional sense, but it is 
very close.  

For the purpose of comparison, we consider the traditional 
linear PID+∆p controller, which is given by: 

pKeKedtKeKi pDIPv ∆+++= ∆� �   (21) 

where ∆p is the differential pressure (pp-pt). 

Full-Bus Model 

We consider a full-bus model of a transit bus with 
dependent suspensions as shown in Fig.3. The parameters of 
the model are extracted from various sources [17-20]. The air 
suspensions and shock absorbers are modeled as nonlinear 
elements. Yaw motions of the bus are considered irrelevant on 
the four-poster. Pitch and roll motions of the body (sprung 
mass) and of the unsprung masses are assumed to be small 
enough to allow use of small angle approximations for the pitch 
and roll motions. The resulting model has seven degrees of 
freedom comprising of the following: bounce of the rear and 
4 Copyright © 2005 by ASME 
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front unsprung masses (zur, zuf), roll motion of the rear and front 
unsprung masses (φur, φuf), and the pitch (θ), roll (φ) and bounce 
(zs) motions of the sprung mass. 
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Figure 3 Model of full-bus with dependent suspensions 

The equations of motion for the front and rear unsprung 
masses (Muf, Mur) and the sprung mass (Ms) are: 
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Note that in the above equations, we have assumed 
compressive tire forces to be positive to easily replace the load 
force FL in the actuator model described above. These tire 
forces, Fti, are approximated by: 

4,3,2,1)()( =−+−= izxCzxKF uipitiuipititi ��   (23) 

And the nonlinear suspension and damping forces, Fsi, are 
given by:  

4,3,2,1)()( =−+−= izzfzzfF uisidiuisisisi ��  (24) 

where, fsi and fdi represent interpolations in tables of air 
suspension stiffness data and shock absorber damping data, 
respectively. The displacements of the suspension attachment 
points, zsi, i=1, 2, 3, 4, are given by: 
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    (25) 

The displacements of the wheel centers, zui, i=1, 2, 3, 4, are 
given by:  

urlruru
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    (26) 

Not shown in Fig.3 are the auxiliary roll stiffness and 
damping torques (Tarr,Tarf) and the body pitch stiffness and 
damping torque (Tp). These are included to account for any 
additional stiffness and damping provided by the mounting 
conditions and elements of the suspension geometry such as 
torsion bars and radius rods. The defining equations are: 

θθ

φφφφ
φφφφ

�

��

��

apapap

ufarfufarfarf

urarrurarrarr

CKT

CKT

CKT

+=

−+−=

−+−=

)()(

)()(

   (27) 

where, Karr ,Karf , Kap are the respective auxiliary torsional 
stiffnesses, and Carr, Carf and Cap are the auxiliary torsional 
damping coefficients. 

SIMULATION STUDY 

Road Simulator System Model 

Note that, for the full-bus model, the piston positions, xpi, 
of the four actuators represent road profile inputs to the test 
vehicle as a subsystem. On the other hand, the tire forces, Fti, 
i=1, 2, 3, 4, can be considered as the outputs of the full-bus 
model and as the load forces on the actuator load-plates.  

Figure 4 shows the input-output interconnection of the road 
simulator as a system. For simplicity, the figure shows the 
interconnection of a quarter-bus to the electrohydraulic actuator 
model including its corresponding decentralized controller. The 
case of the full-bus model has a similar structure. 

Reference 
Generator Quarter Bus ModelModel of one actuator 

and its controller

Ft

xd xp

v p

 

Figure 4 Road Simulator System Model 

Tuning the Decentralized Controllers 

It was first attempted to tune the decentralized controllers 
of the four actuators using a nonlinear quarter-bus model with 
parameters corresponding to the full-bus model. The equations 
describing a quarter-bus can easily be derived from Eq (22) by 
ignoring all pitch and roll motions and focusing on one corner 
of the bus. Two different quarter-bus models were employed to 
5 Copyright © 2005 by ASME 
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tune the controllers of the front and rear actuators, since the 
loading on the front portion of the bus differs from the rear. 

However, the best actuator control gains determined using 
the quarter-bus model led to instability when used on the 
coupled four-actuator case of the full-bus model. The problem 
was particularly severe when tuning the KP-gains of the 
PID+�p controllers. This is to be expected because the quarter-
bus model ignores motion cross-coupling that is relevant in the 
more realistic full-bus model. The gains are, therefore, re-tuned 
interactively by considering the useable gains on the full-bus 
four-actuator system as well. The problem of instability with 
higher gains or faster pole locations is much less acute for the 
Near IO linearizing controller. This is because the Near IO 
linearizing controller uses some of the cross-coupling 
information via feedback of the tire forces. 

Figure 5 shows a basic comparison between the tracking 
performance of the Near IO linearizing controller and a 
PID+�p controller for one of the rear actuators loaded with a 
quarter-bus, employing gains that were useable in the four- 
actuator full-bus case as well. To generate a smooth step 
reference, the tangent hyperbolic function was used:  

)tanh(
T

tt
Xx o

dd
−

=     (28) 

Parameters to and Xd determine the instant and magnitude of the 
step, while T is a smoothening parameter. As T→0, this 
function approaches the Heavside step function with sharp 
corners. For the data in Fig.5, T=0.05, and for the PID+∆p 
controller, KP-gain=3mA/cm, K�p-gain=0.001mA/MPa, 
KD=KI=0. All three poles of the Near IO linearizing controller 
were placed at s=-400 for a response that doesn’t saturate the 
control current (±9mA) for the chosen step reference. 
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Figure 5 Tuning the Near IO linearizing controller (NLC) 
and a PID+�p controller using a quarter-bus model 

A similar comparison was obtained for the front actuators. 
With the lighter mass and softer suspension associated with the 
front portion of the bus, the closed-loop poles for the Near IO 
linearizing controller could be pushed further to the left (to s=-
650) than it was possible with the rear actuators without 
saturating the control current or inducing instability of the four-
actuator, full-bus system. The KP-gain of the PID+�p controller 
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could likewise be increased further (to 18mA/cm) without 
destabilizing the full-bus case. However, the comparative 
performance of the Near IO linearizing controller with the 
PID+�p controller remains similar to that shown in Fig. 5. It is 
remarked, here, that the decentralized Near IO linearizing 
controller shows consistently less tracking error peak 
magnitudes than the decentralized PID+�p controller. 

Interaction in Decentralized Piston Position Control Loops 

The effect of interaction due to dynamic load cross-
coupling on the decentralized control of each of the four-
poster’s actuator load-plate positions is briefly investigated in 
this section. To this end, the nonlinear system is first brought to 
a steady-state and then, one by one, the reference input (desired 
position) for one actuator position control loop is step changed 
while the references to the other actuators are kept zero.  

Figure 6 shows one set of responses following a step 
change in the reference input for the rear left actuator controller 
from 0 to 80 mm (with T=0.05) while zero reference is given to 
the controllers of the other actuators. 
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Figure 6 Actuator interaction in terms of load-plate 
positions with decentralized Near IO linearizing control 
(NLC) (left column) and PID+�p control (right column) 

It can be seen from Fig.6 that, following the step 
disturbance, clearly, interaction is present between the 
decentralized control loops, but the degree of interaction is very 
small with either controller. The strongest interaction is side to 
side. That is, the rear left actuator interacts the most with the 
rear right actuator, and so on. Furthermore, the advantage of the 
Near IO linearizing controller over the PID+�p controller does 
not appear to be significant in terms of minimizing interactions 
for the test vehicle considered. 

The Relative Gain Array (RGA) is often used to asses 
interactions between decentralized control loops [21-24]. The 
time domain RGA, first suggested by [24], and used in [22, 25] 
is given by: 

TtgtgtRGA )](ˆ[*).(ˆ)( =     (29) 

where the product (.*) is an element by element multiplication 
and )(ˆ tg is a matrix given by (for 2x2 case): 
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where the iyδ  are computed as integral deviations (from steady 
state(ss) values preceding the step disturbances) by  

4,3,2,1)( =−= � idyyy issii τδ   (31) 

The smooth step changes δui are computed in a similar 
manner. Note that the RGA(t) is a matrix of the same size )(ˆ tg , 
which is 4x4 for the four-poster, and that, it is invariant under 
scaling. The closer an element λi,j of the RGA(t) is to 1, the 
stronger is the coupling between that particular input (xdj) and 
output (xpi) Therefore, the closer the RGA is to the identity 
matrix, the stronger the diagonal dominance of the system. The 
RGA number is also used as a measure of this closeness of the 
RGA to the identity matrix. It is computed by: 

sum
ItRGAtnumberRGA −= )()(    (32) 

The above remarks imply that when the RGA is close to the 
identify matrix, or equivalently when the RGA number is close 
to zero, a decentralized control loop employing a diagonal 
input-output pairing of xdi with xpi suffers minimal interaction 
effects from other loops. Here i and j are indexes 1, 2, 3, 4 
corresponding to the front left, front right, rear right and rear 
left actuator, respectively. Figure 7 shows the diagonal RGA 
elements and the RGA number computed by repeating the tests 
shown in Fig. 6 with all actuators.  
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Figure 7 Diagonal elements of the RGA and the RGA 
number with decentralized Near IO linearizing control 
(NLC) (left column) and PID+�p control (right column). 

Note that the time scales shown in Fig.7 are within the rise-
time of the step change in the reference. The large initial 
magnitudes of the diagonal RGA elements show that 
interactions are present in the system, but they die away very 
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quickly. The diagonal RGA elements rapidly approach one and 
the RGA number vanishes to zero very fast, showing the 
diagonal dominance of the decentralized position control loops. 
Furthermore, the RGA number with the Near IO linearizing 
controller dies away somewhat faster that the PID+�p 
controller, but overall the two controllers perform similarly in 
suppressing interactions.  

The switch in the sign of the diagonal RGA elements 
magnified in the inserts in Fig.7 is typical of systems showing 
inverse response [24]. Figure 6 shows that inverse response is 
evident in the actuators on the right side (both front and rear), 
when positive step reference is applied to the rear left actuator. 
As Witcher and McAvoy [24] pointed out, these large and 
switching RGA magnitudes are normally expected to cause 
control difficulty. In the present application, however, the 
interactions die away very fast, even faster than the ‘smooth’ 
step change (considered reasonable for this application), 
showing the effectiveness of the present decentralized feedback 
controllers (either linear or nonlinear).  

In the paper [25], we used short time-span open-loop tests, 
without any control on all actuators, to trace the physical cause 
of this behavior. When one actuator moves in response to 
current input, cross-coupling in the vehicle’s dynamics causes 
load changes on the other actuators even if they were operating 
with a closed valve (zero current). However, the actuators do 
not move much, or any induced motion due to these load 
changes dies away quickly, similar to the closed-loop case 
shown in Fig.6. This can certainly be attributed to the good 
stiffness property of the electrohydraulic actuator.  

We conclude this section by stating that the four-poster 
with decentralized control of actuator load-plate positions and 
the transit bus as a test vehicle behaves as an almost diagonal 
MIMO system. Any interactions exhibited are quickly 
suppressed by either the linear or nonlinear decentralized 
control. 

Performance of the Road Simulator under Decentralized 
Position Control 

In this section, we include comparisons of the tracking 
performance of the two decentralized controllers using a typical 
road profile as the desired load-plate position trajectory (xdi).  

Recall from the model interconnection described 
previously that on the road simulator, the vehicle model can be 
considered to be driven by the actuator load-plate positions (xpi) 
as inputs. Here, we shall also consider the case where the full-
bus model is driven directly by the actual road profile 
(replacing xpi by the road profile, xdi). We shall refer to vehicle 
response obtained under the latter case as the “on-the-road” 
response. The performance of the road simulator system in 
replicating road excitation shall be evaluated by comparing on-
simulator response to “on-the-road” response.  

Road profiles typically contain such a widely varying 
excitation that it would be inconvenient to investigate the 
effectiveness of the road simulator by scrutinizing time 
responses or power spectral density (PSD) plots. We therefore 
use some performance metrics that give single numbers which 
quantitatively indicate the quality of the road simulation.  

A simple metric is the rms value of a response parameter 
X, which is given by: 
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where N is the number of data points considered. We shall 
compare the rms values of the sprung and unsprung mass 
acceleration responses on the road simulator and “on-the-road”. 
Brauer [26] suggested the related metric called Euclidean error. 
It is computed by taking the rms value of the difference 
between two discrete signals X and Y of length N as follows: 

N

YX

Eucl

N

i
ii�

=

−

= 1

2)(

    (34) 

Since vehicle responses are often described in the 
frequency domain, we shall also compute the Power Spectral 
Density (PSD) for the sprung mass vertical acceleration for 
both on-simulator and “on-the-road” responses. 

The International Roughness Index (IRI) is often used to 
characterize roughness of road surfaces [27]. The typical road 
profile we consider in this section is of IRI 170 (in/mile), which 
falls under a mediocre road classification. The road profile data 
used here have been taken from ref [27] and they are actual 
road profiles from field measurements for a total distance of 
500 meters. The profiles differentiate between left-side and 
right-side tracks and are available as tables of horizontal travel 
vs. vertical deviation. This data are easily converted to time 
signals for an assumed vehicle speed. We consider speeds of 35 
mph (56 km/hr) and 55 mph (88 km/hr) in this section. Note 
also that the time lag (= (wheel base/vehicle speed)) 
differentiates the reference profiles applied to the front and rear 
actuators. 

Recall that for a nonlinear system, the performance of the 
controller (particularly of the Near IO linearizing one) depends 
on the reference trajectory. Therefore, the two decentralized 
controllers were re-tuned for the specific road profile 
considered here. Since the time waveform corresponding to a 
road profile depends on the vehicle speed, one may consider 
tuning the controller gains for each vehicle speed as well. 
However, for the basic comparison presented in this section, 
this was not found necessary. The three-closed-loop pole 
locations for the front actuator Near IO linearizing controllers 
were set at s=-1000 and those of the rear ones were set at s=-
900; for the front actuator PID+∆p controllers, P-gain= 18 
mA/cm and ∆p-gain=0.004 mA/MPa and for the rear ones, P-
gain= 3.5 mA/cm and ∆p-gain=0.005 mA/MPa. These gains 
were determined for a well-tuned tracking performance with 
the vehicle speed at 35mph and were used for 55 mph as well.  
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Figure 8 Rear left actuator load-plate position for a section 
of an IRI 170 road at 55 mph with the Near IO linearizing 
position tracking controller (NLC) and the PID+∆∆∆∆p 
controller. 

Figure 8 shows a section of the time waveform plots for 
the load-plate tracking behavior for the rear left actuator. Note 
that the Near IO linearizing controller gives an almost perfect 
tracking compared to the PID+∆p controller. Table 1 
summarizes the tracking performance for all actuators covering 
the whole 500 m-long profile using the Euclidean position error 
metric. The position error is computed as the instantaneous 
error between the actuator position output and the road-profile 
reference for the particular actuator, considering time lags and 
left-side/right-side track differences. As should be expected, for 
both controllers (which were tuned at 35 mph), the Euclidean 
error is higher at 55 mph, but in all cases, the Near IO 
linearizing controller outperforms the PID+∆p controller in 
terms of matching each load-plate position with the respective 
desired road profile. The improvement in the tracking 
performance with the Near IO linearizing controller is more 
than about 60% at all actuators and at both vehicle speeds.  

Table 1 Comparison of the tracking performance for the 
two decentralized controllers 

Euclidean position eror (mm) Vehicle 
speed 
(km/hr 
(mph)) 

Decentralized 
controller 

Front 
Left 

Front 
Right 

Rear 
Right 

Rear 
Left 

PID+∆p 0.166 0.189 0.645 0.640 56(35) 
NLC 0.060 0.072 0.088 0.072 

PID+∆p 0.338 0.362 0.897 0.893 88(55) 
NLC 0.137 0.162 0.211 0.177 

Table 2 shows a further comparison in terms of vehicle 
response parameters, namely, the rms values of sprung and 
unsprung mass accelerations for the whole 500 m-long profile. 
The on-simulator responses using the decentralized Near IO 
linearizing controller have better matching with the “on-the-
road” responses than those using the PID+∆p controller. We 
8 Copyright © 2005 by ASME 
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also note the improvement with the Near IO linearizing 
controller is reduced when looking at vehicle responses instead 
of actuator load-plate tracking errors. This can be attributed to 
the filtering characteristics of the tire and the suspension. 

Table 2 Comparison of rms values of on-simulator and “on-
the-road” responses 

Form of excitation 
(actuator control or direct 

road profile input) 

Vehicle 
speed 
(km/hr 
(mph )) 

Response 
parameter 

(accelerations (g)) 
PID+∆p NLC road 

sprung mass 0.0116 0.0120 0.0119 
front unsprung 

mass 0.3242 0.3201 0.3176 56(35) 

rear unsprung 
mass 0.3926 0.4564 0.4377 

sprung mass 0.0172 0.0187 0.0184 
front unsprung 

mass 0.5400 0.0538 0.5205 88(55) 

rear unsprung 
mass 0.6089 0.7022 0.6700 

Finally, we look at a comparison of responses in the 
frequency domain. Figure 9 shows the power spectral density 
(PSD) of the on-simulator and “on-the-road” sprung mass 
acceleration responses with the vehicle speed at 55 mph. For 
lower frequencies, there is little difference between the two 
decentralized controllers. However, at higher frequencies, the 
on-simulator response with the Near IO linearizing controller 
matches the “on-the-road” response much better than the on-
simulator response with the PID+∆p controller. 
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Figure 9 PSD of Sprung mass acceleration in the frequency 
domain for an IRI 170 road at 55mph with the 
decentralized Near IO linearizing position controller (NLC) 
and the decentralized PID+∆∆∆∆p controller 

Table 3 summarizes the differences between the PSDs of 
the on-simulator and “on-the-road” sprung mass acceleration 
responses for the whole 500 m-long profile at vehicle speeds of 
35 and 55 mph. For this table, the Euclidean error is computed 
as the rms error between the on-simulator response and “on-
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the-road” response at each discrete frequency point of the FFT 
(Fast Fourier Transform). For both controllers, it can be seen 
that the Euclidean PSD error is higher at 55 mph than at 35 
mph (as should be expected, since tuning was done for 35 
mph), but in all cases, the Near IO linearizing controller (NLC) 
keeps the error metric smaller than the PID+∆p controller by 
over 50%. 

Table 3 Comparison of the Euclidean error in the sprung 
mass acceleration PSD 

Vehicle speed 
(km/hr 
(mph)) 

Decentralized 
controller 

Euclidean PSD error in 
sprung mass acceleration 

((g2/Hz)x10-6) 

PID+∆p 8.3967 
56 (35) 

NLC 4.0320 

PID+∆p 16.7080 
88 (55) 

NLC 4.5079 

CONCLUSIONS 
In this paper, the decentralized control of the 

electrohydraulic actuators of a four-post road simulation system 
has been considered. A nonlinear controller that cancels the 
nonlinearities in the electrohydraulic actuator has been derived. 
A full-bus model of a transit bus, employing nonlinear air-
suspensions and nonlinear shock-absorbers, has been adopted 
as the test vehicle model.  

Using simulations of the road simulator as a system, it has 
been shown that in terms of eliminating interaction, 
decentralized control of actuator load-plate positions is very 
effective for the test vehicle considered. This implies that for 
the actuator to follow road profile measurements, the 
decentralized control of the actuators’ load-plate positions 
provides a satisfactory solution. It is also highlighted that this 
arose naturally from the good stiffness property of 
electrohydraulic actuators. Furthermore, in terms of 
suppressing interactions, the advantage for the Near IO 
linearizing controller over the PID+�p controller appears to be 
small. The tracking performance of the individual loops, 
however, is improved significantly with the Near IO linearizing 
controller. 

Using rms performance metrics, the performance of the 
road simulation system for tracking an actual road profile of 
mediocre roughness is investigated. It has been shown that the 
Near IO linearizing controller outperforms the PID+∆p 
controller in all the cases considered. In particular, there is 
more than a 60% improvement in matching load-plate positions 
with reference profiles with the nonlinear controller. It is noted 
that there is a corresponding improvement in terms of response 
matching as well. For example, there is a more than 50% 
reduction in the Euclidean error of matching PSDs of the 
sprung mass veritcal acceleration when using the Near IO 
linearizing controller compared to the PID+∆p controller. 

Recall that practical road simulation approaches generally 
consider the road simulation system (including the actuators 
and the test vehicle) as a MIMO unit, with the decentralized 
position controllers as an ‘inner’-loops to the ‘outer’-loop 
iterative drive signal generators that attempt to match on-
simulator responses to desired (on road) responses. The fact 
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that significantly better tracking of actuator load plate positions 
are obtained with the decentralized Near IO linearizing 
controller has important implications for these response-
replication road simulation approaches. It improves the 
linearity and speed of response of the ‘inner’-loop, so that 
iterative drive signal generation converges faster and ‘outer’-
loop MIMO compensators work better. 
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